One-point singular solutions to the Navier-Stokes equations
نویسندگان
چکیده
منابع مشابه
Global solutions to hyperbolic Navier-Stokes equations
We consider a hyperbolicly perturbed Navier-Stokes initial value problem in R, n = 2, 3, arising from using a Cattaneo type relation instead of a Fourier type one in the constitutive equations. The resulting system is a hyperbolic one with quasilinear nonlinearities. The global existence of smooth solutions for small data is proved, and relations to the classical Navier-Stokes systems are discu...
متن کاملSmooth or singular solutions to the Navier – Stokes system ?
The existence of singular solutions of the incompressible Navier-Stokes system with singular external forces, the existence of regular solutions for more regular forces as well as the asymptotic stability of small solutions (including stationary ones), and a pointwise loss of smoothness for solutions are proved in the same function space of pseudomeasure type. 2000 Mathematics Subject Classific...
متن کاملClassical Solutions of the Navier-stokes Equations
The simplest, most elementary proofs of the existence of solutions of the Navier-Stokes equations are given via Galerkin approximation. The core of such proofs lies in obtaining estimates for the approximations from which one can infer their convergence (or at least the convergence of a subsequence of the approximations) as well as some degree of regularity of the resulting solution. The first ...
متن کاملA comparative study between two numerical solutions of the Navier-Stokes equations
The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...
متن کاملOptimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topological Methods in Nonlinear Analysis
سال: 1998
ISSN: 1230-3429
DOI: 10.12775/tmna.1998.008